由于没人能知道真正的缘分何时到来,没人能知道下一个来求爱的男生会是什么样子,接受表白的时机早晚实在很难决定。怎么办?去向《非诚勿扰》的黄菡老师和乐嘉老师请教一下?其实你还可以向欧拉老师请教一下。你没听错。大数学家欧拉对一个神秘的数学常数 e ≈ 2.718 深有研究,这个数字和“拒人问题”竟然有着直接的联系。 “拒人问题”的数学模型为了便于我们分析,让我们把生活中各种复杂纠纷的恋爱故事抽象成一个简单的数学过程。假设根据过去的经验,MM 可以确定出今后将会遇到的男生个数,比如说 15 个、30 个或者 50 个。不妨把男生的总人数设为 n。这 n 个男生将会以一个随机的顺序排着队依次前来表白。每次被表白后,MM 都只有两种选择:接受这个男生,结束这场“征婚游戏”,和他永远幸福地生活在一起;或者拒绝这个男生,继续考虑下一个表白者。我们不考虑 MM 脚踏两只船的情况,也不考虑和被拒男生破镜重圆的可能。最后,男人有好有坏,我们不妨假设 MM 心里会给男生们的优劣排出个名次来。
聪明的 MM 会想到一个好办法:先和前面几个男生玩玩,试试水深;大致摸清了男生们的底细后,再开始认真考虑,和第一个比之前所有人都要好的男生发展关系。从数学模型上说,就是先拒掉前面 k 个人,不管这些人有多好;然后从第 k+1 个人开始,一旦看到比之前所有人都要好的人,就毫不犹豫地选择他。不难看出,k 的取值很讲究,太小了达不到试的效果,太大了又会导致真正可选的余地不多了。这就变成了一个纯数学问题:在男生总数 n 已知的情况下,当 k 等于何值时,按上述策略选中最佳男生的概率最大? 如何求出最优的 k 值?对于某个固定的 k,如果最适合的人出现在了第 i 个位置(k < i ≤ n),要想让他有幸正好被 MM 选中,就必须得满足前 i-1 个人中的最好的人在前 k 个人里,这有 k/(i-1) 的可能。考虑所有可能的 i,我们便得到了试探前 k 个男生之后能选中最佳男生的总概率 P(k):